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bstract
This paper investigates the channel flow with a suction or injection boundary condition to imitate the reactant flow in fuel cells. A two-
imensional model is proposed for a channel with a trapezoidal cross-section, and systematically analyzed using the perturbation method and the
aplace transform technique. The model predicts the species concentration at the electrode of the fuel cell under the constraint of uniform current
ensity along the channel. For convenience of use as a formula, the asymptotic solutions to some results are found for two different limits of x/k.

2005 Elsevier B.V. All rights reserved.
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. Introduction

Channel flow belongs to the class of most fundamental
roblems for which the Navier–Stokes equation can be solved
xactly. Since every device using fluids needs a fluid supply
assage, channel flow has functioned as a simplistic model of
he phenomena that occur in complex devices such as catalytic
onverter–fuel cell assemblies and MEMS devices. Considering
ts wide applicability and versatility, it might not be possible to
numerate all the applications of channel flow. As models have
een developed to incorporate various aspects of physics, tech-
iques to solve them with greater sophistication and speed have
lso been suggested. However, in spite of the long history of
evelopment, most of these models do not allow an analytical
pproach because of the non-linearity of the governing equation
nd the coupling between variables.

A fuel cell is an electrochemical energy-conversion device
hat uses different types of fuel, such as hydrocarbons, methanol
nd hydrogen. There are various types of fuel cell, depending
n the electrolyte, but most of them have a supply channel of

eactants to a porous electrode in common. From the perspec-
ive of the fuel cell channel, the electrochemical reaction at the
lectrode can be modeled as suction of reactants and injection of
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roduct species through the bottom of the channel. The channel
ow with wall suction or injection without the inclusion of a
hemical reaction is well known as the Berman problem. Many
esearchers have tried to find various types of solutions and the
nstability modes for the so-called symmetric and asymmetric
erman problems. A two-dimensional velocity profile has been

ound for the Berman problem with the aid of a similarity func-
ion that can be expressed as a series expansion in terms of
he Reynolds number based on the injection or suction veloc-
ty. Recently, Cox and King [1] reviewed this approach in their
ndings of more complete asymptotic solutions for the Berman
roblem. In the field of fuel cells, where electrochemical reac-
ions complicate the channel flow, Kulikovsky [2] analytically
ound the velocity and species concentration along the channel
irection. Using a one-dimensional model and neglecting vis-
ous dissipation, he used a low-Mach-number approximation to
emove the non-linearity of the convection term.

In this paper, we propose a two-dimensional reacting
ow model for a fuel cell that includes variation of species
oncentration in the direction of the channel height. The
hannel is allowed to have a trapezoidal cross-section instead
f a rectangular shape so that the model can predict the effect of
he draft angle that is common in composite or metal separator

lates. In this paper it is assumed that the velocity is not changed
y the electrochemical reaction, which can be justified when the
oncentration of inert gas is exceedingly large compared to that
f the species participating in the reaction [2]. This hypothesis
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Nomenclature

A, A′ constant representing the concentration gradient
c species concentration
C Laplace transform of c
F Faraday’s constant
h channel half-height
i current density
j index used in the Stehfest algorithm of Eq. (31)
k parameter defined in Section 3.1
L Laplace transform
M number of terms in the Stehfest algorithm of Eq.

(31)
m̄wall mass flux at the bottom wall
O order of magnitude
p pressure
Re Reynolds number
s Laplace-transformed coordinate of x
Sc Schmidt number
u stream-wise velocity
v transverse velocity
W channel width
W0 channel width at y = 0
WM,n constant defined in Section 4.1
x non-dimensionalized stream-wise coordinate
y non-dimensionalized transverse coordinate

Greek letters
β draft angle parameter defined in Section 2
ε perturbation parameter
λ constant defined in Section 2
θ draft angle

Subscripts
0,(0) zero order
1,(1) first order
2,(2) second order
n index used in the Stehfest algorithm of Eq. (31)
w wall condition

Superscripts
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Fig. 1. Schematic diagram of the channel shape
Fig. 2. Infinitesimal control volume for the channel with draft angle θ.

eeds to be checked for many examples of real operating
onditions, but is adopted for simplicity of the solution in this
aper.

. Mathematical formulation

As a method to investigate the reacting flow in a fuel cell, we
se channel flow with a suction or injection boundary condition
or a certain species. Fig. 1 shows a schematic diagram of the
odel that is investigated in this paper. The flow is driven by a

ressure gradient formed in the x direction, while a concentration
radient in the y direction imparts additional movement to the
pecies within the channel. In the z direction, there are variations
n the velocity and concentration originating from the no-slip and
ero-flux boundary condition at the wall. However, its effect is
econdary compared with variation in the x and y directions.
he fuel cell channel has a small cross-section compared with

ts length, which often amounts to a few 100 times its cross-
ection dimension. The channel width W(y) varies with y and
an be written as function of the draft angle θ, for which θ = 0
orresponds to the rectangular channel case.

In the fuel cell, the suction velocity of the reactant species
s a function of the current density divided by the product of
he Faraday constant and the concentration of that species [3].
onsidering that the average current density of a fuel cell under
ormal operating conditions is approximately 1 A cm−2, the suc-
ion velocity is found to be a tiny fraction of the mainstream
elocity U, which is approximately 5 m s−1 under the same con-
itions.

vw| O

(
i

Fci

)
· · ·

∣∣∣vw

U

∣∣∣ O(10−3),
∂

∂y
� ∂

∂x
. (1)
his observation allows us to assume that diffusion in the y
irection will dominate that in the other directions, which is
onsistent with the boundary layer approximation [4]. Fig. 2
hows the control volume for the trapezoidal channel in Fig. 1,

and coordinate system under investigation.
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Fig. 3 shows the change in velocity profile with draft angle var-
ied up to 40◦ for the case W0/h = 2. The location of the peak
velocity moves upward as the draft angle increases because of
the reduction in the effective area in the upper region of channel.
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together with mass fluxes into and out of each surface. It has
finite width W(y), and infinitesimal thickness �x and height �y.
Taking the limit as �x → 0, �y → 0, the mass balance within
the control volume yields:

∂(Wu)

∂x
+ ∂(Wv)

∂y
= 0 (2)

The momentum and the species balance can be treated in the
same manner. As a first approximation to the Maxwell–Stefan
equation, the diffusion is considered to follow Fick’s law for
binary fluids, irrespective of the number of components. The
length, velocity, and pressure are non-dimensionalized by the
channel half-height h, mean velocity U, and dynamic pres-
sure ρU2. Neglecting axial diffusion and introducing non-
dimensionalized variables, the governing equation for the trape-
zoidal channel flow with reaction yields:

W̄
∂u

∂x
+ W̄

∂v

∂y
+ v

∂W̄

∂y
= 0

W̄u
∂u

∂x
+ W̄v

∂u

∂y
= −W̄

∂p

∂x
+ 1

Re

∂

∂y

[
W̄

∂u

∂y

]

W̄u
∂ci

∂x
+ W̄v

∂ci

∂y
= 1

ReSc

∂

∂y

[
W̄

∂ci

∂y

]
(3)

The normalized channel width W̄(y) and the draft angle param-
eter β are defined as follows:

W̄(y) = 1 − βy (−1 ≤ y ≤ 1), β ≡ 2 tan θ

W0/h

where θ is the draft angle, and W0 = W(0) (4)

Since we assume that the velocity is not changed by the reaction,
the momentum equation for the fully developed flow can be
simplified as follows:

∂u

∂x
= 0, v = 0 · · · Re

∂p

∂x
= 1

W̄

∂

∂y

[
W̄

∂u

∂y

]
= const ≡ λ

(5)

From the no-slip boundary condition:

u(−1) = u(1) = 0 (6)

Expanding u in terms of the draft angle parameter β as a pertur-
bation variable:

u = u(0) + βu(1) + β2u(2) + · · · , (7)

where the zero order in β is:

d2u(0)
dy2 = λ, u(0)(−1) = u(0)(1) = 0

∴ u(0) = λ

2
(y2 − 1) (8)

F
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he first order in β is:

d2u(1)

dy2 = d

dy

(
y

du(0)

dy

)
− λy = λy,

(1)(−1) = u(1)(1) = 0 ∴ u(1) = λ

6
(y3 − y) (9)

he second order in β is:

d2u(2)

dy2 = d

dy

(
y

du(1)

dy

)
= λ

3
(2y3 − y),

(2)(−1) = u(2)(1) = 0 ∴ u(2) = λ

90
(3y5 − 5y3 + 2y)

(10)

nd the third order in β is:

d2u(3)

dy2 = d

dy

(
y

du(2)

dy

)
= λ

90
(75y4 − 45y2 + 2),

(3)(−1) = u(3)(1) = 0

u(3) = λ

360
(10y6 − 15y4 + 4y2 + 1) (11)

ollecting and adding terms up to the third order gives:

≈ λ

2
(y2 − 1) + β

λ

6
(y3 − y) + β2 λ

90
(3y5 − 5y3 + 2y)

+β3 λ

360
(10y6 − 15y4 + 4y2 + 1) (12)

he constant λ is calculated from the definition of the average
elocity:

= 1

2

∫ 1

−1
udy ≈ 1

2

∫ 1

−1
u(0)dy = −λ

3
∴ λ ≈ −3 (13)
ig. 3. Effect of draft angle θ on normalized velocity profile within the channel.
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his is the result for W0/h = 2, in other words for a channel with
quare cross-section when it has no draft angle. If the channel
as greater width than its height, the effect of the draft angle will
e lessened, as can be deduced from the definition of β.

Using Eqs. (12) and (13), the species equation now can be
implified as follows:

¯ u
∂ci

∂x
= 1

ReSc

∂

∂y

[
W̄

∂ci

∂y

]

here u ≈ u(0) + βu(1) + β2u(2) + β3u(3) + · · · (14)

s for the boundary condition, the inlet concentration is assumed
o be constant. To simplify the calculation, we redefine the con-
entration ci as deviation from the inlet condition. In spite of this
hange, Eq. (14) can still be used in its original form, since it con-
ains only derivative terms. At the reacting wall of the bottom,
he Neumann-type boundary condition can be imposed under the
ssumption that mass transfer there occurs only by diffusion. If
he channel has a meandering shape or a dead-end configura-
ion, the pressure rise in the channel will be high enough to
llow the direct penetration of species into the electrode. In that
ase, we have to include convective transport into the wall, which
equires simultaneous solution of the y-momentum equation. To
implify the solution, we assume a straight channel that has neg-
igible pressure drop along the channel. Since the total flux of
uction or injection is determined by external loading and is not
ependent on the change in the bottom area of channel caused by
raft, the following condition is imposed on the bottom surface:

¯ wall ∼ W̄y=−1

(
∂ci

∂y

)
y=−1

∴
(

∂ci

∂y

)
y=−1

= A

1 + β
where A ∼ m̄wall (15)

t the upper, non-reacting wall, there will be no mass flux of
ny kind, which means that the concentration gradient vanishes
here. To sum up:

ci
∣∣
x=0 = 0,

∂ci

∂y

∣∣∣∣
y=−1

= A

1 + β
,

∂ci

∂y

∣∣∣∣
y=1

= 0 (16)

f A is positive, suction of species i occurs at the wall, whereas
f it is negative, injection occurs. The magnitude of A is related
o the amount of suction or injection of species i and conse-
uently to the local current density by Faraday’s law. Under most
perating conditions for fuel cells, except at very low current
ensity, A varies along x and should be simultaneously deter-
ined with the other variables. Although the current density is

ometimes assumed to have a certain profile, such as an expo-
entially decreasing function [2], or to have constant value [5],
t is obvious that assumption of the condition of constant A is
ot well supported by experiments in most cases. However, we
dopt it in this paper to concentrate on the flow and mass transfer

hile considering the electrochemical reaction only through the

uction or injection boundary condition.
The concentration of species i, more exactly the concentration

hange for species i from the inlet condition, can be expanded

3
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n terms of β as in the case of velocity:

i = ci
(0) + βci

(1) + β2ci
(2) + β3ci

(3) + · · · (17)

xpanding Eqs. (14) and (16) similarly and collecting like
erms of β, the following equations and boundary conditions
re obtained after substitution into Eqs. (8)–(11).

Zero-order terms in β:

(1 − y2)
∂ci

(0)

∂x
= ∂2ci

(0)

∂y2 where k ≡ 3

2
ReSc (18)

ci
(0)

∣∣
x=0

= 0,
∂ci

(0)

∂y

∣∣∣∣∣
y=−1

= A

1 + β
,

∂ci
(0)

∂y

∣∣∣∣∣
y=1

= 0

(19)

irst-order terms in β:

(1 − y2)
∂ci

(1)

∂x
− ∂2ci

(1)

∂y2 = −∂ci
(0)

∂y
− 1

3
y
∂2ci

(0)

∂y2 (20)

ci
(1)

∣∣
x=0

= 0,
∂ci

(1)

∂y

∣∣∣∣∣
y=−1

= 0,
∂ci

(1)

∂y

∣∣∣∣∣
y=1

= 0 (21)

econd-order terms in β:

(1 − y2)
∂ci

(2)

∂x
− ∂2ci

(2)

∂y2 = −∂ci
(1)

∂y
− y

3

∂2ci
(1)

∂y2 − 2y

3

∂ci
(0)

∂y

+2y

90
(2 + 5y − 3y2)

∂2ci
(0)

∂y2 (22)

ci
(2)

∣∣
x=0

= 0,
∂ci

(2)

∂y

∣∣∣∣∣
y=−1

= 0,
∂ci

(2)

∂y

∣∣∣∣∣
y=1

= 0 (23)

hird-order terms in β:

(1 − y2)
∂ci

(3)

∂x
− ∂2ci

(3)

∂y2

= −∂ci
(2)

∂y
− y

3

∂2ci
(2)

∂y2 −2y

3

∂ci
(1)

∂y
+ y

45
(2 + 5y − 3y2)

∂2ci
(1)

∂y2

− y

45
(2 + 35y − 3y2)

∂ci
(0)

∂y

+ 1

540
(3 − y2 − 20y3 − 6y4)

∂2ci
(0)

∂y2 (24)

ci
(3)

∣∣
x=0

= 0,
∂ci

(3)

∂y

∣∣∣∣∣
y=−1

= 0,
∂ci

(3)

∂y

∣∣∣∣∣
y=1

= 0 (25)

. Numerical results
.1. The perturbation method

In this section, we use the perturbation method and the
aplace transform technique to systematically investigate Eqs.
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18)–(25). The perturbation method in this section is different
rom that used in Section 2, in that the perturbation parameter
has no physical meaning, but is introduced for mathematical

onvenience. Eqs. (18), (20), (22) and (24) commonly contain
he term y2 on the left-hand side, the omission of which greatly
implifies the solution. Hence, we multiply the term y2 by the
erturbation parameter ε and expand the left-hand side in terms
f ε, while the right-hand side is calculated from the solutions
or the lower-order equations. After solving the decomposed
quations, they are recombined with the substitution of 1 for
he perturbation parameter ε. This approach can be regarded as
eing valid as far as the recombined terms constitute a converged
eries [6,7].

.1.1. Zero-order terms in β

(1 − εy2)
∂ci

(0)

∂x
= ∂2ci

(0)

∂y2

here ci
(0) = c0 + εc1 + ε2c2 + · · · (26)

ero-order terms in ε:

∂c0

∂x
= ∂2c0

∂y2 , c0|x=0 = 0,
∂c0

∂y

∣∣∣∣
y=−1

= A

1 + β
,

∂c0

∂y

∣∣∣∣
y=1

= 0 (27)

or terms of order j larger than 0:

∂cj

∂x
−∂2cj

∂y2 =ky2 ∂cj−1

∂x
, cj

∣∣
x=0 = 0,

∂cj

∂y

∣∣∣∣
y=−1

= 0,

∂cj

∂y

∣∣∣∣
y=1

= 0 where j = 1, 2, 3, · · · (28)

.1.2. First-order terms in β

(1 − εy2)
∂ci

(1)

∂x
− ∂2ci

(1)

∂y2 = −∂ci
(0)

∂y
− y

3

∂2ci
(0)

∂y2

here ci
(1) = c0 + εc1 + ε2c2 + · · · (29)

ero-order terms in ε:

∂c0

∂x
− ∂2c0

∂y2 = −∂ci
(0)

∂y
− y

3

∂2ci
(0)

∂y2 , c0|x=0 = 0,

∂c0

∂y

∣∣∣∣
y=−1

= 0,
∂c0

∂y

∣∣∣∣
y=1

= 0 (30)

or terms of order j larger than 0:

∂cj ∂2cj ∂cj−1 ∣

∂x

−
∂y2 = ky2

∂x
, cj

∣
x=0 = 0,

∂cj

∂y

∣∣∣∣
y=−1

= 0,
∂cj

∂y

∣∣∣∣
y=1

= 0 where j = 1, 2, 3, · · · (31)
es 159 (2006) 1051–1060 1055

.1.3. Second-order terms in β

(1 − εy2)
∂ci

(2)

∂x
− ∂2ci

(2)

∂y2 = −∂ci
(1)

∂y
− y

3

∂2ci
(1)

∂y2 − 2y

3

∂ci
(0)

∂y

+2y

90
(2 + 5y − 3y2)

∂2ci
(0)

∂y2

here ci
(2) = c0 + εc1 + ε2c2 + · · · (32)

ero-order terms in ε:

∂c0

∂x
− ∂2c0

∂y2 = −∂ci
(1)

∂y
−y

3

∂2ci
(1)

∂y2 −2y

3

∂ci
(0)

∂y

+2y

90
(2 + 5y − 3y2)

∂2ci
(0)

∂y2 , c0|x=0 = 0,

∂c0

∂y

∣∣∣∣
y=−1

= 0,
∂c0

∂y

∣∣∣∣
y=1

= 0 (33)

or terms of order j larger than 0:

∂cj

∂x
− ∂2cj

∂y2 = ky2 ∂cj−1

∂x
, cj

∣∣
x=0 = 0,

∂cj

∂y

∣∣∣∣
y=−1

= 0,
∂cj

∂y

∣∣∣∣
y=1

= 0 where j = 1, 2, 3, · · ·
(34)

.1.4. Third-order terms in β

(1 − εy2)
∂ci

(3)

∂x
− ∂2ci

(3)

∂y2 = −∂ci
(2)

∂y
− y

3

∂2ci
(2)

∂y2 − 2y

3

∂ci
(1)

∂y

+y(2 + 5y − 3y2)

45

∂2ci
(1)

∂y2 − y(2 + 35y − 3y2)

45

∂ci
(0)

∂y

+3 − y2 − 20y3 − 6y4

540

∂2ci
(0)

∂y2

here ci
(3) = c0 + εc1 + ε2c2 + · · · (35)

ero-order terms in ε:

∂c0

∂x
− ∂2c0

∂y2 = −∂ci
(2)

∂y
− y

3

∂2ci
(2)

∂y2 − 2y

3

∂ci
(1)

∂y

+y(2 + 5y − 3y2)

45

∂2ci
(1)

∂y2 − y(2 + 35y − 3y2)

45

∂ci
(0)

∂y

+3 − y2 − 20y3 − 6y4

540

∂2ci
(0)

∂y2 , c0|x=0 = 0,
∂c0

∂y

∣∣∣∣
y=−1

= 0,
∂c0

∂y

∣∣∣∣
y=1

= 0 (36)
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or terms of order j larger than 0:

∂cj

∂x
− ∂2cj

∂y2 = ky2 ∂cj−1

∂x
, cj

∣∣
x=0 = 0,

∂cj

∂y

∣∣∣∣
y=−1

= 0,
∂cj

∂y

∣∣∣∣
y=1

= 0 where j = 1, 2, 3, · · · (37)

.2. The Laplace transform

The partial differential equations that were derived in the
revious section can be transformed to ordinary differential
quations (ODEs) using the Laplace transform, the definition
f which can be expressed as follows:

j(s, y) ≡ L[cj(x, y)] =
∫ ∞

0
e−sxcj(x, y) dx,

here j = 0, 1, 2, · · · (38)

.2.1. Zero-order terms in β

(0) ≡ L[ci
(0)] = C0 + εC1 + ε2C2 + · · · (39)

ero-order terms in ε:

sC0(s, y) = d2C0(s, y)

dy2 ,

dC0

dy

∣∣∣∣
y=−1

= A

1 + β

1

s
,

dC0

dy

∣∣∣∣
y=1

= 0 (40)

or terms of order j larger than 0:

sCj(s, y) − d2Cj(s, y)

dy2 = ksy2Cj−1(s, y),

dCj

dy

∣∣∣∣
y=−1

= 0,
dCj

dy

∣∣∣∣
y=1

= 0 (41)

.2.2. First-order terms in β

(1) ≡ L[ci
(1)] = C0 + εC1 + ε2C2 + · · · (42)

ero-order terms in ε:

sC0 − d2C0

dy2 = −dC(0)

dy
− y

3

d2C(0)

dy2 ,

dC0

dy

∣∣∣∣
y=−1

= 0,
dC0

dy

∣∣∣∣
y=1

= 0 (43)

or terms of order j larger than 0:

d2Cj(s, y)

sCj(s, y) −

dy2 = ksy2Cj−1(s, y),

dCj

dy

∣∣∣∣
y=−1

= 0,
dCj

dy

∣∣∣∣
y=1

= 0. (44)

a
L
d
[

es 159 (2006) 1051–1060

.2.3. Second-order terms in β

(2) ≡ L[ci
(2)] = C0 + εC1 + ε2C2 + · · · (45)

ero-order terms in ε:

sC0 − d2C0

dy2 = −dC(1)

dy
− y

3

d2C(1)

dy2 − 2y

3

dC(0)

dy

+2y

90
(2 + 5y − 3y2)

d2C(0)

dy2 ,

dC0

dy

∣∣∣∣
y=−1

= 0,
dC0

dy

∣∣∣∣
y=1

= 0 (46)

or terms of order j larger than 0:

sCj(s, y) − d2Cj(s, y)

dy2 = ksy2Cj−1(s, y),

dCj

dy

∣∣∣∣
y=−1

= 0,
dCj

dy

∣∣∣∣
y=1

= 0 (47)

.2.4. Third-order terms in β

(3) ≡ L[ci
(3)] = C0 + εC1 + ε2C2 + · · · (48)

ero-order terms in ε:

sC0 − d2C0

dy2 = −dC(2)

dy
− y

3

d2C(2)

dy2 − 2y

3

dC(1)

dy

+y(2 + 5y − 3y2)

45

d2C(1)

dy2 − y(2 + 35y − 3y2)

45

dC(0)

dy

+3 − y2 − 20y3 − 6y4

540

d2C(0)

dy2 ,

dC0

dy

∣∣∣∣
y=−1

= 0,
dC0

dy

∣∣∣∣
y=1

= 0 (49)

or terms of order j larger than 0:

sCj(s, y) − d2Cj(s, y)

dy2 = ksy2Cj−1(s, y),

dCj

dy

∣∣∣∣
y=−1

= 0,
dCj

dy

∣∣∣∣
y=1

= 0 (50)

.3. Solution of ODEs and the inverse Laplace transform

The ODEs derived in the previous section can be solved

nalytically by successive substitution. However, the inverse
aplace transforms for these are nearly impossible to find
irectly using the conversion formula. The Stehfest algorithm
8,9] is an effective method to find the inverse Laplace trans-
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Fig. 4. Change in Ci
(0)(x, 1) as the order of approximation in ε is changed (A = 10,
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enhanced mass diffusion can be used for greater compensation
of the concentration change at the reaction site. Fig. 8 shows
the change in concentration profile within the channel as k is
increased. The graph shows obvious variation in its magnitude
= 200, β = 0). Exact solutions to ODEs for Cj were used in the inverse Laplace
ransform with M = 6 for the Stehfest algorithm.

orms approximately:

ci(x, y) ≈ ln 2

x

M∑
j=1

wjCi(sj, y) where sj = j
ln 2

x

wj = (−1)M/2+j

min(j,M/2)∑
n=(1+j)/2

(2n)!nM/2

(M/2 − n)!n!(n − 1)!(j − n)!(2n −

he number of terms M in the Stehfest algorithm is usually set
igher than or equal to six [10]. In this section, we provide some
esults using the internal functions of Mathematica to treat the
DEs and the additional package developed by Cheng et al. [11]

n implementing the Stehfest algorithm. The number of terms
o be included in the expansion for the desired accuracy is also
hecked before we try to find the analytical solution.

Let us consider a polymer electrolyte membrane (PEM) fuel
ell under normal operating conditions of 1 atm and 80 ◦C.
he fuel cell is assumed to operate under uniform current den-
ity mode at approximately 1 A cm−2. The stoichiometric ratio,
hich represents how many times reactants are supplied through

he inlet compared to the quantity that actually participates in
he reaction, is ordinarily set higher than or equal to 2.0. The
hannel cross-section within the separator plate is considered to
ave a square shape with height and width equal to 2 mm, and its
ength to be much greater, as for most serpentine channel shapes.
et us assume that the ratio of the channel length to its height is
50, in other words the channel length non-dimensionalized by
he channel half-height h is 500. For this channel shape and these
perating conditions, the Reynolds number is approximately
00. The Schmidt number for different gas pairs is 0.56–0.74
or N2, O2, and H2O compounds [12]. Hence, k in Eq. (18)
s approximately 200–260, while x varies from 0 to 500. Fig. 4

resents the concentration profile along the channel in the case of
o draft as the order of approximation in ε is changed. In the case
f no draft, the zero-order term in β, Ci

(0) represents ci. Fig. 4

hows that Ci
(0) converges with the inclusion of higher-order

F
k
t
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(51)

erms in ε, and for the first-order approximation it approaches
he converged solution with 8% error on average. For the second-
rder approximation in ε, a 2% error applies to Ci

(0) on average.
rom this result, we choose to cut off the terms higher than the
econd order in ε in this paper. Fig. 5 presents the concentra-
ion profile for the channel with non-zero draft angle with the
rder of approximation in β changed. The result presented is
or conditions of A = 10, k = 200, and θ = 10◦. It shows that the
rst-order approximation in β is sufficient to provide an accu-
ate profile of ci in the case of non-zero draft. Fig. 6 shows
he error of the first-order approximation compared to the third-
rder approximation at various locations of the channel. Within
% across the channel length, the first-order approximation in β

rovides a good representation of higher-order approximations
o the converged solution. Fig. 7 plots the concentration change
or species i from the inlet condition in the case of no draft. The
onitoring point is at the reaction site located at y = −1 along

he channel width and k is varied from 100 to 500. Excluding the
apid decay near the inlet, the concentration decreases with con-
tant slope along the channel in the case of suction. The slope
f the decrease becomes less steep with higher k, the product

f the Reynolds number and the Schmidt number. For injection
f species i, its concentration would increase along the channel
nd the slope of the profile would decrease as k increases. It
an be deduced from the graph that both increased inertia and
ig. 5. Change in ci(x,–1) as the order of approximation in β is changed (A = 10,
= 200, θ = 10◦). Exact solutions to ODEs for Cj were used in the inverse Laplace

ransform with M = 6 for Stehfest algorithm.
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Fig. 6. First-order approximation error in β at various locations of the reaction
site.

Fig. 7. Concentration change for species i from the inlet condition, ci(x,–1), as
k is increased (A = 10, β = 0).

Fig. 8. Concentration change for species i from the inlet condition, ci(100,y), as
k is increased (A = 10, β = 0).
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ig. 9. Effect of draft angle θ on the distribution of concentration ci(x,–1) in the
tream-wise direction (W0/h = 2, A = 10, k = 200).

n the direction of the channel height, which justifies the use of
two-dimensional model for concentration. For k above 300,

he upper wall is hardly affected by reaction at the bottom. This
bservation suggests that the measurement of species concen-
ration through the slot of the upper wall may not be sufficient
o deduce the condition at the bottom. Figs. 9 and 10 show the
raft angle effect on the concentration ci in the directions of the
hannel length and height. Fig. 11 presents the contour plot for
i within the channel for two different draft angles. The bigger
raft angle produces smaller perturbation of the concentration
t the bottom, which means the higher concentration of reac-
ant and the faster removal of product from the reaction site.
n the fuel cell, the enhanced activity of reactant oxygen surely
ontributes to the increase in performance. However, the fast

emoval of product water may cause membrane drying, which
ould reduce proton conductivity and lower the performance
hen operated under low humidity conditions. In the case of
igh humidity conditions, the removal of product water is favor-

ig. 10. Effect of draft angle θ on the distribution of concentration deviation
i(100,y) in the direction of the channel height (W0/h = 2, A = 10, k = 200).
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Table 1
WM,n for M ≥ 16

n WM,n

1 1
3/2 0.939437
2 0.693147
5/2 0.434112
3 0.240227
7/2 0.120362
4 0.0555044
9/2 0.0238368
5 0.00961786

1

v

C

α

F
t
o

C

α

α

α

4

i
a

W

F
i
n

4

c

ig. 11. Concentration change for species i from the inlet condition, c (x,y),
ithin the channel for different draft angles: (a) θ = 10◦ (solid line); and (b)
= 40◦ (dashed line).

ble, but if condensation starts to occur, the reduced momentum
t the bottom due to the draft may not be sufficient to withdraw
ater droplets at the interface with the gas diffusion layer. More
etails on the water problem for fuel cells can be found in the
iterature [13–17].

. Approximate analytical solution

In this section, we try to find the approximate analytical
xpression for the numerical results presented in Section 3. First,
e use two different limits to approximate the ODE solutions

nd then find their inverse Laplace transforms. From the results
resented in Figs. 5 and 6, we determine to expand ci only up to
he first order in β. The analytical solutions for ODEs in this sec-
ion were found using Mathematica implementing the symbolic
peration.

.1. Asymptotic solutions for ODEs

.1.1. Small ks limit
For zero-order terms in β, C(0) that satisfies Eqs. (39)–(41)

as the following approximate expression at y = −1 for small
alues of ks:

(0) ≈ − Ak

1 + β

[
13

18k2s2 + 46

63ks

]
(52)

or first-order terms in β, C(1) that satisfies Eqs. (42)–(44) has
he following approximate expression at y = −1 for small values
f ks:

(1) ≈ − Ak

1 + β

[
13

18k2s2 + 572

2835ks

]
(53)
.1.2. Large ks limit
For zero-order terms in β, C(0) that satisfies Eqs. (39)–(41)

as the following approximate expression at y = −1 for large

a

c

1/2 0.00367086
6 0.00133253

alues of ks:

(0)(s, −1) ≈ − Ak

1 + β

7∑
n=3

αn

kn/2sn/2 , α3 = 1.875,

4 = −1.5, α5 = 1.75, α6 = −1.375, α7 = 0.65625

(54)

or first-order terms in β, C(1) that satisfies Eqs. (42)–(44) has
he following approximate expression at y = −1 for large values
f ks:

(1)(s, −1) ≈ − Ak

1 + β

12∑
n=3

αn

kn/2sn/2 , α3 = 0.277344,

4 = 1.05859, α5 = −1.42839, α6 = 2.44596,

7 = −4.14128, α8 = 7.82894, α9 = −13.6265,

10 = 19.1652, α11 = −18.6228, α12 = 9.28491 (55)

.2. Approximate inverse Laplace transform

Now we use the Stehfest algorithm of Eq. (51) to find the
nverse Laplace transforms for Eqs. (52) and (53), and Eqs. (54)
nd (55). For convenience, we introduce a new constant, WM,n:

M,n ≡
M∑

j=1

wj

jn
(56)

or M ≥ 16, WM,n becomes nearly independent of M, the numer-
cal value of which is tabulated in Table 1 for different values of
.

.2.1. Small ks limit (large x/k limit)
This limit corresponds to the case of large x/k.
The zero-order terms in β from Eqs. (51) and (52) are:

i
(0)(x, −1) ≈ − A

1 + β

[
13WM,2

18 ln 2

(x

k

)
+ 46WM,1

63

]
(57)
nd the first-order terms in β from Eqs. (51) and (53) are:

i
(1)(x, −1) ≈ − A

1 + β

[
13WM,2

18 ln 2

(x

k

)
+ 572WM,1

2835

]
(58)
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o sum up, for large x/k:

i(x, −1) ≈ ci
(0)(x, −1) of Eq. (57) + βci

(1)(x, −1) of Eq. (58)

(59)

ci(x, −1) ≈ −A
[
0.722

(x

k

)
+ 0.730f (β)

]

here f (β) = 1 + 0.2763β

1 + β
(60)

.2.2. Large ks limit (small x/k limit)
The zero-order terms in β from Eqs. (51) and (54) are:

i
(0)(x, −1) ≈ − A

1 + β

7∑
n=3

[
WM,n/2αn

(ln 2)n/2−1

(x

k

)n/2−1
]

,

3 = 1.875, α4 = −1.5, α5 = 1.75, α6 = −1.375,

7 = 0.65625 (61)

nd the first-order terms in β from Eqs. (51) and (55) are:

i
(1)(x, −1) ≈ − A

1 + β

12∑
n=3

WM,n/2αn

(ln 2)n/2−1

(x

k

)n/2−1
,

3 = 0.277344, α4 = 1.05859, α5 = −1.42839,

6 = 2.44596, α7 = −4.14128, α8 = 7.82894,

9 = −13.6265, α10 = 19.1652, α11 = −18.6228,

12 = 9.28491 (62)
o sum up, for small x/k:

i(x, −1) ≈ ci
(0)(x, −1) of Eq. (61) + βci

(1)(x, −1) of Eq. (62)

(63)

ig. 12. Comparison of the asymptotic approximation derived in Section 4 with
he numerical result (A = 10, k = 200, θ = 10◦).
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.3. Comparison of asymptotic solutions with the
umerical result

Fig. 12 presents the numerical result, together with asymp-
otic solutions for two limits of x/k. Eqs. (60) and (63) are in
ood agreement with the numerical result for nearly all ranges
f x. In most regions, except at the start of channel, the large x/k
ondition can be applied, which produces the following formula
or the change in concentration of species i:

i(x, −1) ≈ −A

[
0.722

(x

k

)
+ 0.730

W0/h + 0.5526 tan θ

W0/h + 2 tan θ

]

(64)

. Conclusion

A two-dimensional model was developed to imitate channel
ow in a fuel cell. The effect of the inlet conditions and the
hannel geometry on the concentration distribution was inves-
igated in the case of wall suction or injection. The product of
he Reynolds number and the Schmidt number, k, was useful in

anipulating the concentration distribution within the channel.
or k > 300, the upper part of the channel was hardly affected
y the reaction at the bottom. The draft angle of the channel
as shown to suppress the change in concentration at the reac-

ion site. The performance of the fuel cell for different values of
he draft angle requires further study, together with the water-
xhausting capability of a non-rectangular channel. For different
imits of x/k, two asymptotic solutions were found that showed
ood agreement with the numerical result.
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